首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   603194篇
  免费   9160篇
  国内免费   2037篇
电工技术   11344篇
综合类   518篇
化学工业   86226篇
金属工艺   21715篇
机械仪表   17456篇
建筑科学   15878篇
矿业工程   1660篇
能源动力   16926篇
轻工业   57439篇
水利工程   5059篇
石油天然气   4627篇
武器工业   27篇
无线电   80429篇
一般工业技术   114946篇
冶金工业   115658篇
原子能技术   9737篇
自动化技术   54746篇
  2021年   4281篇
  2020年   3212篇
  2019年   4084篇
  2018年   6657篇
  2017年   6741篇
  2016年   7158篇
  2015年   5361篇
  2014年   8981篇
  2013年   28728篇
  2012年   15156篇
  2011年   21497篇
  2010年   16833篇
  2009年   19136篇
  2008年   20457篇
  2007年   20669篇
  2006年   18455篇
  2005年   16837篇
  2004年   16357篇
  2003年   16237篇
  2002年   15008篇
  2001年   14923篇
  2000年   13482篇
  1999年   14649篇
  1998年   36470篇
  1997年   25931篇
  1996年   19913篇
  1995年   15911篇
  1994年   14284篇
  1993年   13815篇
  1992年   10144篇
  1991年   9711篇
  1990年   9294篇
  1989年   8776篇
  1988年   8526篇
  1987年   7205篇
  1986年   7128篇
  1985年   8427篇
  1984年   7850篇
  1983年   7032篇
  1982年   6574篇
  1981年   6478篇
  1980年   6125篇
  1979年   5880篇
  1978年   5462篇
  1977年   6677篇
  1976年   9044篇
  1975年   4546篇
  1974年   4400篇
  1973年   4222篇
  1972年   3546篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
91.
In this study, dilute chemical bath deposition technique has been used to deposit CdZnS thin films on soda-lime glass substrates. The structural, morphological, optoelectronic properties of as-grown films have been investigated as a function of different Zn2+ precursor concentrations. The X-ray diffractogram of CdS thin-film reveals a peak corresponding to (002) plane with wurtzite structure, and the peak shift has been observed with the increase of the Zn2+ concentration upon formation of CdZnS thin film. From morphological studies, it has been revealed that the diluted chemical bath deposition technique provides homogeneous distribution of film on the substrate even at a lower concentration of Zn2+. Optical characterization has shown that the transparency of the film is influenced by Zn2+ concentration and when the Zn2+ concentration is varied from 0 M to 0.0256 M, bandgap values of resulting films range from 2.42 eV to 3.90 eV while. Furthermore, electrical properties have shown that with increasing zinc concentration the resistivity of the film increases. Finally, numerical simulation validates and suggests that CdZnS buffer layer with composition of 0.0032 M Zn2+ concentration would be a promising candidate in CIGS solar cell.  相似文献   
92.
Barrier dysfunction of airway epithelium contributes to the development of allergies, airway hyper-responsiveness and immunological respiratory diseases. Short-chain fatty acids (SCFA) enhance and restore the barrier function of the intestinal epithelium. This study investigated whether acetate, propionate and butyrate enhance the integrity of bronchial epithelial cells. Differentiating human bronchial epithelial cells (16HBE) grown on transwells were exposed to butyrate, propionate and acetate while trans-epithelial electrical resistance was monitored over time. Restorative effects of SCFA were investigated by subsequent incubation of cells with IL-4, IL-13 or house dust mite extract and SCFA. SCFA effects on IL-4-induced cytokine production and the expression of zonula occludens-1 (ZO-1) and Mitogen-activated protein kinases (MAPK) signalling pathways were investigated by ELISA and Western blot assays. Propionate and butyrate enhanced the barrier function of differentiating 16HBE cells and induced complete recovery of the barrier function after exposure to the above-mentioned stimuli. Butyrate decreased IL-4-induced IL-6 production. IL-4 decreased ZO-1 protein expression and induced phosphorylation of extracellular signal-regulated protein kinases 1/2 (ERK1/2) and c-Jun N-terminal kinases (JNK) in 16HBE cells, both of which could be restored by SCFA. SCFA showed prophylactic and restorative effects on airway epithelial barrier function, which might be induced by increased ZO-1 expression.  相似文献   
93.
The deposition of amyloid-beta (Aβ) through the cleavage of amyloid-beta precursor protein (APP) is a biomarker of Alzheimer’s disease (AD). This study used QIAGEN Ingenuity Pathway Analysis (IPA) to conduct meta-analysis on the molecular mechanisms by which methamphetamine (METH) impacts AD through modulating the expression of APP. All the molecules affected by METH and APP were collected from the QIAGEN Knowledge Base (QKB); 78 overlapping molecules were identified. Upon simulation of METH exposure using the “Molecule Activity Predictor” feature, eight molecules were found to be affected by METH and exhibited activation relationships on APP expression at a confidence of p = 0.000453 (Z-score = 3.51, two-tailed). Core Analysis of these eight molecules identified High Mobility Group Box protein 1 (HMGB1) signaling pathway among the top 5 canonical pathways with most overlap with the 8-molecule dataset. Simulated METH exposure increased APP expression through HMGB1 at a confidence of p < 0.00001 (Z-score = 7.64, two-tailed). HMGB1 is a pathogenic hallmark in AD progression. It not only increases the production of inflammatory mediators, but also mediates the disruption of the blood-brain barrier. Our analyses suggest the involvement of HMGB1 signaling pathway in METH-induced modulation of APP as a potential casual factor of AD.  相似文献   
94.
The urokinase receptor (uPAR) is a cell surface receptor that binds to the serine protease urokinase-type plasminogen activator (uPA) with high affinity. This interaction is beneficial for extravascular fibrin clearance, but it has also been associated with a broad range of pathological conditions including cancer, atherosclerosis, and kidney disease. Here, starting with a small molecule that we previously discovered by virtual screening and cheminformatics analysis, we design and synthesize several derivatives that were tested for binding and inhibition of the uPAR ⋅ uPA interaction. To confirm the binding site and establish a binding mode of the compounds, we carried out biophysical studies using uPAR mutants, among them uPARH47C−N259C, a mutant previously developed to mimic the structure of uPA-bound uPAR. Remarkably, a substantial increase in potency is observed for inhibition of uPARH47C−N259C binding to uPA compared to wild-type uPAR, consistent with our use of the structure of uPAR in its uPA-bound state to design small-molecule uPAR ⋅ uPA antagonists. Combined with the biophysical studies, molecular docking followed by extensive explicit-solvent molecular dynamics simulations and MM-GBSA free energy calculations yielded the most favorable binding pose of the compound. Collectively, these results suggest that potent inhibition of uPAR binding to uPA with small molecules will likely only be achieved by developing small molecules that exhibit high-affinity to solution apo structures of uPAR, rather than uPA-bound structures of the receptor.  相似文献   
95.
In this study, the hydraulic reactivity and cement formation of baghdadite (Ca3ZrSi2O9) was investigated. The material was synthesized by sintering a mixture of CaCO3, SiO2, and ZrO2 and then mechanically activated using a planetary mill. This leads to a decrease in particle and crystallite size and a partial amorphization of baghdadite as shown by X-ray powder diffraction (XRD) and laser diffraction measurements. Baghdadite cements were formed by the addition of water at a powder to liquid ratio of 2.0 g/ml. Maximum compressive strengths were found to be ~2 MPa after 3-day setting for a 24-h ground material. Inductively coupled plasma mass spectrometry (ICP-MS) measurements showed an incongruent dissolution profile of set cements with a preferred dissolution of calcium and only marginal release of zirconium ions. Cement formation occurs under alkaline conditions, whereas the unground raw powder leads to a pH of 11.9 during setting, while prolonged grinding increased pH values to approximately 12.3.  相似文献   
96.
In the past decade, the perovskite solar cell (PSC) has attracted tremendous attention thanks to the substantial efforts in improving the power conversion efficiency from 3.8% to 25.5% for single-junction devices and even perovskite-silicon tandems have reached 29.15%. This is a result of improvement in composition, solvent, interface, and dimensionality engineering. Furthermore, the long-term stability of PSCs has also been significantly improved. Such rapid developments have made PSCs a competitive candidate for next-generation photovoltaics. The electron transport layer (ETL) is one of the most important functional layers in PSCs, due to its crucial role in contributing to the overall performance of devices. This review provides an up-to-date summary of the developments in inorganic electron transport materials (ETMs) for PSCs. The three most prevalent inorganic ETMs (TiO2, SnO2, and ZnO) are examined with a focus on the effects of synthesis and preparation methods, as well as an introduction to their application in tandem devices. The emerging trends in inorganic ETMs used for PSC research are also reviewed. Finally, strategies to optimize the performance of ETL in PSCs, effects the ETL has on J–V hysteresis phenomenon and long-term stability with an outlook on current challenges and further development are discussed.  相似文献   
97.
This paper reports an investigation on the structure-properties correlation of trivalent metal oxide (Al2O3)-doped V2O5 ceramics synthesized by the melt-quench technique. XRD patterns confirmed a single orthorhombic V2O5 phase formation with increasing strain on the doping of Al2O3 in place of V2O5 in the samples estimated by Williamson-Hall analysis. FTIR and Raman investigations revealed a structural change as [VO5] polyhedra converts into [VO4] polyhedra on the doping of Al2O3 into V2O5. The optical band gap was found in a wide semiconductor range as confirmed by UV–visible spectroscopy analysis. The thermal and conductivity behavior of the prepared samples were studied using thermal gravimetric analysis (TGA) and impedance analyzer, respectively. All the prepared ceramics exhibit good DC conductivity (0.22–0.36 Sm-1) at 400 ?C. These materials can be considered for intermediate temperature solid oxide fuel cell (IT-SOFC)/battery applications due to their good conductivity and good thermal stability.  相似文献   
98.
Noncentrosymmetric (NCS) tetrel pnictides have recently generated interest as nonlinear optical (NLO) materials due to their second harmonic generation (SHG) activity and large laser damage threshold (LDT). Herein nonmetal-rich silicon phosphides RuSi4P4 and IrSi3P3 are synthesized and characterized. Their crystal structures are reinvestigated using single crystal X-ray diffraction and 29Si and 31P magic angle spinning NMR. In agreement with previous report RuSi4P4 crystallizes in NCS space group P1, while IrSi3P3 is found to crystallize in NCS space group Cm, in contrast with the previously reported space group C2. A combination of DFT calculations and diffuse reflectance measurements reveals RuSi4P4 and IrSi3P3 to be wide bandgap (Eg) semiconductors, Eg = 1.9 and 1.8 eV, respectively. RuSi4P4 and IrSi3P3 outperform the current state-of-the-art infrared SHG material, AgGaS2, both in SHG activity and laser inducer damage threshold. Due to the combination of high thermal stabilities (up to 1373 K), wide bandgaps (≈2 eV), NCS crystal structures, strong SHG responses, and large LDT values, RuSi4P4 and IrSi3P3 are promising candidates for longer wavelength NLO materials.  相似文献   
99.
Experimental research of the crystal structure, polarization properties, and reverse nonlinearity of ceramic solid solutions of the (1-x) (Na0·5K0.5)NbO3-xPb(Ti0·5Zr0.5)O3 (KNN-PZT) quasi-binary system with 0.0 = x ≤ 1.0 in a wide range of external influences (temperatures, strength of dc/ac fields) has been done. Based on the X-ray structural data, an x-T diagram of the system has been constructed, and correlations of the behavior of the macroproperties of solid solutions with the features of their phase states with the temperature change have been established. It has been concluded that it is advisable to use the proposed compositions when designing microelectronic devices operating in various extreme conditions.  相似文献   
100.
The high capacity anode material is required to replace the most commonly used anode - graphite to keep up the global demand to achieve the goal. Multi-metal oxide has gained keen attention for its higher theoretical capacity and relatively stable than a single metal oxide. α-SnWO4 has a theoretical capacity of 850 mAh g?1 which is greater than graphite (372 mAh g?1). α-SnWO4 has been synthesized through low-temperature hydrothermal method using tin chloride and sodium tungstate as a precursor in acidic medium (succinic acid) at 200 °C for 12 h. The obtained product has been characterized using various analytical tools such as XRD, FT-IR, UV-DRS, BET, PL, SEM, and HR-TEM. XRD analysis shows the orthorhombic phase with a crystallite size of ~25 nm α-SnWO4has been examined as an electrode material for Li-ion battery (LIB) and displays an initial discharge capacity of 985 mAh g?1. Columbic efficiency close to 100% has been observed for 100 cycles. The stability of the electrode material was studied at different C-rates. Band-gap calculated using UV-DRS (Eg = 1.9 eV) shows that α-SnWO4 is a good candidate for photocatalytic degradation. Results of the photocatalytic experiment using methylene blue (MB) as a model pollutant in an aqueous medium shows good results. The above applications show that α-SnWO4 is multifunctional materials for diverse applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号